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Local Stability Analysis of Microwave
Oscillators Based on Nyquist’s Theorem

Vittorio Rizzoli, Fellow, IEEE Andrea Neri,Member, IEEE,and Diego Masotti

Abstract—The numerical implementation of Nyquist's theorem of a positive real NF, and thus to the loss or recovery of
for the local stability analysis of forced nonlinear microwave stability with respect to synchronous perturbations [5]. This
circuits operating in a time-periodic electrical regime is well ;i sjies that D(0) = 0 is the condition for the occurrence of
established. However, the straightforward application of the same . . . . .
algorithm to the stability investigation of autonomous circuits, a direct-type blfur_catlon (usually a regul_ar turning point) [2],
such as oscillators, may lead to paradoxical results lacking in [5]. Such conclusions are no longer valid for an autonomous
physical meaning. After demonstrating this by a typical example, circuit. In order to show this by a counter-example, let us
we discuss the correct extension of Nyquist's stability analysis consider the simple microstrip DRO topology shown in Fig. 1.
to autonomous nonlinear c_ircuits a_nd iIIustrat_e the_application The field-effect transistor (FET) is a 300n device (Alenia
of the new algorithm to a simple microwave dielectric resonator - . . .
oscillator (DRO). S30) descrlb_ed by _the n(_)nllnear mode_l re_port_ed in [6]. F_|g. 2
shows the bifurcation diagram for this circuit parametrized
by the distance. between the resonator center and the FET
gate. The Hopf bifurcationgf;, H, are both subcritical, in
the increasing and decreasing parameter sense, respectively,

|. INTRODUCTION and the only bifurcations encountered on the periodic solution
HE NUMERICAL implementation of Nyquist's analy- Pa&th #1T1T> H, are the regular turing point;, 7>. A dc

sis to investigate the local stability properties of timeStability analysis of any of the dc states lying belély shows

periodic regimes in forced nonlinear microwave circuits hdgat all such states are stable. Thus, according to the rules
been investigated by many authors and is now well establisfigPifurcation theory, the oscillatory states belonging to the
[1]-[4]. On the contrary, the application of the same concePf@nchT11> are synchronously stable, while those belonging
to autonomous circuits such as oscillators is more delicat8,the branches?, 7y, T>H, have one positive real NF, and

and not as well understood. The analysis technique can #& thus synchronously unstable [5]. If we now compute the
summarized as follows. Given a time-periodic regime of number of unstable NF of the same states by the conventional

forced nonlinear circuit, a small perturbation of the fornNYquist method, we obtain the results shown by dashed lines

exp[(o + jw)t] is superimposed on the steady-state signalS F.ig. 3. This qnalysis predicts the occurrence'of two un_stable
and a first-order perturbative solution of the circuit equationy IN Some regions of the branéfy 73, and a rapid alternation

is carried out [2]. The requirement that the perturbation ¥ Narrow stable and unstable regions on the braficb, in
self-sustained leads to a characteristic equation for the natfi@itrast with both bifurcation theory and physical likelihood.
frequencies (NF) of the steady state of the fafrfy + jw) = The purpose of .th|s letter is _to analyze the reasons fo_r this
0, whereD(-) is the determinant of a suitable complex rnatri)@nom’alous behavior and to d|scus§ the correct extension of
[2]. Nyquist's method is then applied in order to establish tHdYauist's method to autonomous circuits.

number of NF having positive real parts, without explicitly

finding the roots ofD(¢ + jw). SinceD(s + jw) is periodic 1. NYQUIST'S METHOD FORAUTONOMOUS STEADY STATES

with respect tav, the Nyquist plot is a bounded closed curve, Tpe algorithm for the computation dP(jw) is discussed

so that its nlflmericalakconstruction is an easy job [1], [2]. AlSQy getail in [2] and only the final result will be reported here.
sinceD(0 —jw) = D*(o+jw), D(0) is real [2]. This leads US | gt 1, ., be the number of nonlinear device ports, aNdbe
to the crucial point. Whenever a sign reversallaf0) occurs e nymber of positive harmonics used to describe the steady-
on the periodic solution path of a parametrized forced circuliase wayeforms. Also, let us introduce the complex matrix of
the number of clockwise encirclements of the origin Changﬁ?mensionSnD@N +1) x np(2N +1)
by one, which corresponds to the creation or annihilation
M(jw) =[Y(w +kwo)Prs + Qrs] (=N <k,s<N)
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Microstrip lines: Eup = 9.7 L; = 1.8 mm I, = 1.52mm L = free parameter
hgw, =0.635 mm W; = 1.06 mm W; = 0.81 mm W = 0.61 mm
Dielectric resonator: &4 =37.28 d=5.462 mm tuning plate distance = 2 mm
hyy =2.185 mm a=0.92 mm unloaded Q (10.8 Ghz) = 3600
MESFET model: Alenia S30 Iys =75 mA Vp=-145
Fig. 1. Schematic topology of a simple microstrip FET DRO.
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Fig. 2. Bifurcation diagram for the oscillator shown in Fig. 1. The quantity
plotted in the ordinate is the output power at. H;, H; are Hopf

bifurcations. Fig. 3. Number of unstable natural frequencies of the oscillatory regimes

belonging to the branchel T, T1T>, T» Ho. Dashed lines: computed by

. . . P the Nyquist stability criterion for forced circuits. Solid lines: computed by the
If we now letw = 0, the generic submatrix OM(Jw) modified criterion discussed in this letter.

reduces to the corresponding submatrix of the Jacobian matrix

of the complex harmonic-balance (HB) errors with respect e complex plane always belongs to the Nyquist stability plot
the state-variable harmonics [7], so tsk(0) = J. In the pye to the essential singularity &f(o+ jw) at infinity, on the
the classic analysis, since the Jacobian matrix is known d@circlements of the origin, sa).., asw is swept from 0
be singular at a turning point. For an autonomous circuit thg ., [2]. N., may be obtained from the Nyquist plot of a

phase of the steady state is not determined by the HB equatigigle state, and will thus be regarded as known. Let us now
since there are no sources other than dc. Thus, the HB solVifgoduce the complex function

system haso! time-periodic solutions, and its Jacobian matrix
is singular at each autonomous steady state. The conclusion isF(a + jw) = exp _2r
that for an autonomous regim@(0) = 0, i.e., the origin of

oo

(0 +jw)| Do +jw) (2
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has to be applied to a complex matrix of large order. Due to
the unavoidable numerical errors, this procedure will return
for D(0) a relatively small but substantially random number
instead of zero. Along a solution path such as the one depicted
in Fig. 2, F(0) = D(0) will then randomly alternate between
positive and negative values, and meaningless stability results
such as those plotted by dashed lines in Fig. 3 will be
produced. The automatic recognition of this numerical zero
is very difficult in practice, because the order of magnitude of
|D(jw)| varies wildly as a function ofs, of the number of
harmonics, and of the free parameter along the solution path.
Thus, the safest way of obtaining a stability plot satisfying
the theoretical requirements is to apply Nyquist's criterion to
the quantity

G(o + jw) = F(o + jw) — D(0). 4)
The resulting Nyquist plot exactly contains the origin (to
machine accuracy) without being significantly perturbed for
w # 0.

As an example of application, Fig. 4 shows the modified
Nyquist stability plots (in rectangular coordinates) for the
oscillatory states represented by poifisand U in Figs. 2
and 3. At pointS the plot yieldsA¢ = =, so that from (3)
Nz = 0. At point U the plot yieldsA¢ = 3, so that from
(3) Nz = 1. Thus according to the proposed method, the state
S is stable, whileU is unstable because of one positive real
natural frequency, in agreement with bifurcation theory, but
in contrast with the results obtained from the conventional
Nyquist analysis (dashed lines in Fig. 3). Finally, the solid
lines in Fig. 3 show the number of unstable NF of all the
oscillatory states belonging to the periodic solution path of
Fig. 2, as computed by the modified Nyquist method. Once

Fig. 4. Nyquist stability plots for the oscillatory states represented by poir@gain the results exactly agree with those obtained by means

S andU in Figs. 2 and 3 as a function of normalized frequengjwy. (a)
magnitude; (b) phase in degrees.

of bifurcation theory.
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