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Local Stability Analysis of Microwave
Oscillators Based on Nyquist’s Theorem

Vittorio Rizzoli, Fellow, IEEE, Andrea Neri,Member, IEEE,and Diego Masotti

Abstract—The numerical implementation of Nyquist’s theorem
for the local stability analysis of forced nonlinear microwave
circuits operating in a time-periodic electrical regime is well
established. However, the straightforward application of the same
algorithm to the stability investigation of autonomous circuits,
such as oscillators, may lead to paradoxical results lacking in
physical meaning. After demonstrating this by a typical example,
we discuss the correct extension of Nyquist’s stability analysis
to autonomous nonlinear circuits and illustrate the application
of the new algorithm to a simple microwave dielectric resonator
oscillator (DRO).

Index Terms— Harmonic-balance, nonlinear CAD, stability
analysis.

I. INTRODUCTION

T HE NUMERICAL implementation of Nyquist’s analy-
sis to investigate the local stability properties of time-

periodic regimes in forced nonlinear microwave circuits has
been investigated by many authors and is now well established
[1]–[4]. On the contrary, the application of the same concept
to autonomous circuits such as oscillators is more delicate,
and not as well understood. The analysis technique can be
summarized as follows. Given a time-periodic regime of a
forced nonlinear circuit, a small perturbation of the form

is superimposed on the steady-state signals,
and a first-order perturbative solution of the circuit equations
is carried out [2]. The requirement that the perturbation be
self-sustained leads to a characteristic equation for the natural
frequencies (NF) of the steady state of the form
, where is the determinant of a suitable complex matrix

[2]. Nyquist’s method is then applied in order to establish the
number of NF having positive real parts, without explicitly
finding the roots of . Since is periodic
with respect to , the Nyquist plot is a bounded closed curve,
so that its numerical construction is an easy job [1], [2]. Also,
since is real [2]. This leads us
to the crucial point. Whenever a sign reversal of occurs
on the periodic solution path of a parametrized forced circuit,
the number of clockwise encirclements of the origin changes
by one, which corresponds to the creation or annihilation
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of a positive real NF, and thus to the loss or recovery of
stability with respect to synchronous perturbations [5]. This
implies that is the condition for the occurrence of
a direct-type bifurcation (usually a regular turning point) [2],
[5]. Such conclusions are no longer valid for an autonomous
circuit. In order to show this by a counter-example, let us
consider the simple microstrip DRO topology shown in Fig. 1.
The field-effect transistor (FET) is a 300-m device (Alenia
S30) described by the nonlinear model reported in [6]. Fig. 2
shows the bifurcation diagram for this circuit parametrized
by the distance between the resonator center and the FET
gate. The Hopf bifurcations are both subcritical, in
the increasing and decreasing parameter sense, respectively,
and the only bifurcations encountered on the periodic solution
path are the regular turning points . A dc
stability analysis of any of the dc states lying below shows
that all such states are stable. Thus, according to the rules
of bifurcation theory, the oscillatory states belonging to the
branch are synchronously stable, while those belonging
to the branches have one positive real NF, and
are thus synchronously unstable [5]. If we now compute the
number of unstable NF of the same states by the conventional
Nyquist method, we obtain the results shown by dashed lines
in Fig. 3. This analysis predicts the occurrence of two unstable
NF in some regions of the branch , and a rapid alternation
of narrow stable and unstable regions on the branch , in
contrast with both bifurcation theory and physical likelihood.

The purpose of this letter is to analyze the reasons for this
anomalous behavior and to discuss the correct extension of
Nyquist’s method to autonomous circuits.

II. NYQUIST’S METHOD FORAUTONOMOUS STEADY STATES

The algorithm for the computation of is discussed
in detail in [2] and only the final result will be reported here.
Let be the number of nonlinear device ports, andbe
the number of positive harmonics used to describe the steady-
state waveforms. Also, let us introduce the complex matrix of
dimensions

(1)
where is the admittance matrix of the linear subnet-
work. are submatrices of the nonlinear
subnetwork conversion matrices in the neighborhood of a
known periodic steady state of fundamental angular frequency

[2]. On the imaginary axis, is then given by
[2].
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Fig. 1. Schematic topology of a simple microstrip FET DRO.

Fig. 2. Bifurcation diagram for the oscillator shown in Fig. 1. The quantity
plotted in the ordinate is the output power at!0. H1; H2 are Hopf
bifurcations.

If we now let , the generic submatrix of
reduces to the corresponding submatrix of the Jacobian matrix
of the complex harmonic-balance (HB) errors with respect to
the state-variable harmonics [7], so that . In the
case of a forced circuit, this simply confirms the results of
the classic analysis, since the Jacobian matrix is known to
be singular at a turning point. For an autonomous circuit the
phase of the steady state is not determined by the HB equations
since there are no sources other than dc. Thus, the HB solving
system has time-periodic solutions, and its Jacobian matrix
is singular at each autonomous steady state. The conclusion is
that for an autonomous regime , i.e., the origin of

Fig. 3. Number of unstable natural frequencies of the oscillatory regimes
belonging to the branchesH1T1; T1T2; T2H2. Dashed lines: computed by
the Nyquist stability criterion for forced circuits. Solid lines: computed by the
modified criterion discussed in this letter.

the complex plane always belongs to the Nyquist stability plot.
Due to the essential singularity of at infinity, on the
complex plane makes a number of counterclockwise
encirclements of the origin, say , as is swept from 0
to [2]. may be obtained from the Nyquist plot of a
stable state, and will thus be regarded as known. Let us now
introduce the complex function

(2)



IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 7, NO. 10, OCTOBER 1997 343

(a)

(b)

Fig. 4. Nyquist stability plots for the oscillatory states represented by points
S andU in Figs. 2 and 3 as a function of normalized frequency!=!0. (a)
magnitude; (b) phase in degrees.

where has the same zeros as , but at the
same time has . Furthermore, is a periodic
function of of period . If we apply Nyquist’s theorem
to in the range considering that the
origin belongs to the plot, the Nyquist stability equation takes
on the form [8]

(3)

where is the total phase change of
around the plot, and is the number of zeros with

positive real parts lying in the frequency range .
Since can be obtained by inspection of the Nyquist plot,

can easily be derived. The autonomous regime is stable
if .

The numerical application of the above technique is not
as straightforward as it might appear at a first glance. The
computation of is usually carried out by some trian-
gular decomposition method such as Gauss or Crout, which

has to be applied to a complex matrix of large order. Due to
the unavoidable numerical errors, this procedure will return
for a relatively small but substantially random number
instead of zero. Along a solution path such as the one depicted
in Fig. 2, will then randomly alternate between
positive and negative values, and meaningless stability results
such as those plotted by dashed lines in Fig. 3 will be
produced. The automatic recognition of this numerical zero
is very difficult in practice, because the order of magnitude of

varies wildly as a function of , of the number of
harmonics, and of the free parameter along the solution path.
Thus, the safest way of obtaining a stability plot satisfying
the theoretical requirements is to apply Nyquist’s criterion to
the quantity

(4)

The resulting Nyquist plot exactly contains the origin (to
machine accuracy) without being significantly perturbed for

.
As an example of application, Fig. 4 shows the modified

Nyquist stability plots (in rectangular coordinates) for the
oscillatory states represented by pointsand in Figs. 2
and 3. At point the plot yields , so that from (3)

. At point the plot yields , so that from
(3) . Thus according to the proposed method, the state

is stable, while is unstable because of one positive real
natural frequency, in agreement with bifurcation theory, but
in contrast with the results obtained from the conventional
Nyquist analysis (dashed lines in Fig. 3). Finally, the solid
lines in Fig. 3 show the number of unstable NF of all the
oscillatory states belonging to the periodic solution path of
Fig. 2, as computed by the modified Nyquist method. Once
again the results exactly agree with those obtained by means
of bifurcation theory.
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